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The linearized treatment of general forced 
gas oscillations in tubes 

By PETER A. MONKEWITZ 
Institute of Aerodynamics, Federal Institute of Technology (ETH), Zurich, Switzerlandt 

(Received 18 August 1977 and in revised form 29 June 1978) 

A general linear theory is presented to describe oscillatory flows of gases and liquids in 
a tube of circular cross-section, including the effects of radial and tangential pressure 
gradients as well as the temperature. The basic equations are solved by separation of 
variables. The resulting eigenvalue equation is extensively discussed whereby the 
splitting of the eigenvalues into ‘bands’ is obtained in a natural way. A systematic 
analysis of a number of simplified cases leads to analytic approximations for the 
eigenvalues over an extended domain of parameter variation (frequency, friction) so 
that a complete survey of all the eigenvalues is established. Then the problem of 
satisfying simultaneously arbitrary end-conditions for all flow variables with the 
obtained bands of eigenfunctions is formulated in a way to allow the application of 
Galerkin’s method. Finally the theory is applied to a few examples of ‘end-layers’ and 
radial resonance, which cannot be treated by previous theories. 

1. Introduction 
This paper deals in a most general way with forced steady-periodic linear gas 

oscillations in a rigid tube of circular cross-section with a finite or half-infinite axial 
extent. The oscillations are assumed to be driven by arbitrary steady-periodic boundary 
conditions a t  one of the tube ends (e.g. by a piston or a membrane). The geometry is 
thus given by figure 1. 

Since Kirchhoff (1 868) formulated the appropriate equations, including diffusive 
effects, the problem has received a great deal of attention (cf. the survey by Tijdeman 
1975). A first class of closed form solutions which is characterized by the assumption 
of zero radial pressure gradient has been worked out by Iberall (1950)) Bergh & 
Tijdeman (1965) and Rott (1969). The removal of this restriction and the determina- 
tion of higher radial modes has been undertaken by Scarton (1970)) Scarton & Rouleau 
(1973) for a compressible liquid contained in a tube and by Huerre & Karamcheti 
(1976) for a gas in a plane duct. The importance of this generalization is obvious when 
wavelengths of the order of the tube diameter or smaller are considered and or when 
the tube length is small. In the first case Rayleigh (1945, paragraphs 340,349,350) has 
already pointed out that radial resonances associated with large radial pressure 
gradients must be expected. In the second case of short tubes the ‘endlayers’ become 
important where the transition, again associated with radial pressure gradients, 
between the imposed end-condition and the dominating modes away from the ends 
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FIGURE 1. Situation and co-ordinates. 

takes place. With the knowledge of the higher radial modes the problem of actually 
calculating a flow field with given end-conditions arises naturally, but so far the proper 
superposition of the modes has received surprisingly little attention: the results of 
Gerlach & Parker (1967) which used only modes with inviscid counterparts are 
reported by Scarton (1970) to be incorrect and an iterative scheme proposed by 
Scarton (1 970) is shown in Monkewitz (1 977) to be not generally applicable. 

In  the present study the work of Scarton (1970) is generalized to gas oscillations, i.e. 
temperature effects are included. The full linearized governing equations are solved by 
separation of variables which leads to a generalized eigenvalue equation ( $ 9  2 and 3). 
Thereby the non-axisymmetric modes have been retained in the analysis. In 9 4 the 
eigenvalue equation is solved with special emphasis on analytical approximations for 
the eigenvalues in order to provide a picture of the radial and tangential modes over 
the whole range of parameter variation without referring to a computer program. Then 
the problem of satisfying simultaneously a complete set of end-conditions for the three 
velocity components and the temperature fluctuation is solved in 3 5 ;  the formulation 
in a suitably chosen 'endvector-space ' makes the application of Galerkin's method 
possible. In  order to obtain reasonable approximations with a restricted number of 
modes it is shown that the freedom of weighing the different end-conditions has to be 
built into the Hilbert space. Furthermore it is shown that for a given total number of 
modes there is an optimal relation between the number of modes from each band. In 
5 6 these methods are applied to several examples of 'endlayers ' and ofradial resonance, 
which cannot be treated by previous theories. In  one particularly interesting case of 
radial resonance an approximate analytic solution for small frictional effects could be 
derived. 

2. The linearized basic equations 
Consider a compressible Newtonian fluid undergoing small amplitude motions. Each 

dependent variable such as pressure, density, velocity and temperature may be written 
in the form of a perturbation expansion: 

(2.1) q*(r* ,@,x*;  t*)  = qo*+qT(r*,@,x*; t* )+q; ( r* ,B ,x*;  t * ) +  ...' 
where q$ is a mean value over space and time and q f ,  q;, . , . designate fluctuating 
quantities of higher order. Assuming that there is no mean flow (i.e. v$ = 0), the 
coefficients of shear viscosity p, bulk viscosity K and heat conduction h are constant to 
linear order and the first order (linearized) equations of continuity, motion, thermal 
energy and the equation of state are given by (2.2)-(2.5). It has to be noted that the 
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equation of state is specialized to the perfect gas equation with R ( = cp - cv) denoting 
the gas constant. This simplifies the following algebra but does not constitute a 
severe mathematical simplification as Huerre & Karamcheti (1976) derived under 
the sole assumption of local thermodynamic equilibrium a linearized equation of 
state which differs from (2.5) only in the coeficients of p? and p:. 

i 3 1 av* 
p:" = -gradp:+p -curlcurlv,*+ ++- graddivv: , at* 

aT: ap: p*c --- 
O p at* at* 

= h div grad TT, 

1 To* T: = y p f - 7  p:. 
RPO Po 

These six scalar equations for the unknown quantitiespf , pf , TT and the three velocity 
components describe the fluid motion with good accuracy under the following 
assumptions : 

(a )  Continuum hypothesis: significant changes of dependent variables occur over 
distances large compared to the molecular scale given by the mean free path in a gas 
or the mean molecule spacing in a liquid. 

( b )  The acoustic quantities (index 1)  are small compared with their mean values 
(index 0 )  as are the higher order corrections compared with the acoustic quantities thus 
justifying the linearization of the equations. The first part of the assumption can always 
be fulfilled by choosing the excitation amplitude of the oscillation small enough. The 
second part of the assumption is found to be in general a consequence of the first except 
in a few distinct cases which are: longitudinal resonances treated by Chester (1964) and 
Keller (1976), subharmonic resonances (cf. Keller 1975), most probably radial 
resonances and boundary conditions leading to large or singular second-order cor- 
rections (cf. discussion of b.c.). 

( c )  Laminar motion: Sergeev (1966) and Merkli & Thomann (1975) have shown that 
for the case of harmonic oscillations in a tube the motion is entirely laminar if the 
Reynolds number Re = u&J(vw*)i based on the peak axial velocity ugax and the 
Stokes layer thickness (v /w*)i  is below its critical value of 150-350. 

Introducing non-dimensional quantities? wit,h the tube radius r;, the mean sound 
speed a,, the mean density p ; ,  &at and at/., as reference length, velocity, density, 
pressure and temperature, and further introducing the scalar and vector potentials 

and Yl, assuming that the time-dependence of all acoustic quantities is given by 
the factor exp (iwt) and using the relation at = yRT;  for the mean sound speed leads 
to the following set of equations: 

iw 
(div grad) Y - - A yl] = 

div grad q51( 1 + iwAya) + ~ 2 y q 5 ~  - iw(y - 1) Tl = 0, (2.8) 

t Dimensional quantities are denoted by *. 



i0r 0% 
div grad Tl( 1 + iwAya) - - (1 + iwRa) T1 + - A A = 0, 

with lCrlz given by divY, = 0, (2.10) 

where y, Q, a = 6 + (K/,u) and A = v/aor,* are the specific heat ratio, the Prandtl number, 
the non-dimensional bulk viscosity parameter and the friction parameter respectively. 
It must be noted that A is of the order of the ratio of mean free path and tube radius 
rz for gases or of the ratio of mean molecule spacing and tube radius for common 
liquids such as water. Thus assumption (a)  of this section implies A << 1 except for very 
viscous liquids which will not be considered. 

The original first-order quantities are recovered through the relations : 

(2.11) I v1 = grad$,+curlYY,, 

p1 = - 

pl = - 

1 
div grad $1, 

zw 

+ Aa div grad $l. 

For the domain 0 < r < 1 and 0 < x < L (0 c L < 03) the following boundary condi- 
tions on v1 and Tl are considered (conditions on other variables such as pressure, which 
could easily be substituted, are not considered because of the difficulty of comparison 
with an experiment). 

Condition on the tube axis: to exclude Neumann-type singular solutions every acoustic 
quantity q1 has to fulfil the condition 

ql(r = O,O,x; t )  < 03. (2.12) 

Boundary conditions at the tube perimeter: all velocity components and the tempera- 
ture fluctuations are assumed to vanish a t  r = 1. This means that the tube wall is rigid 
and has a much larger heat capacity than the fluid. 

vl(r = 1,8, X ;  t )  = 0, 
T1(r = 1,B, x ;  t )  = 0. 

(2.13) 

Boundary conditions at the tube ends: it is assumed that the displacement x,(r, t )  of 
the end wall a t  x = 0 is given in the form of the Fourier series 

m - 
x, = 2 ( m ) ( r )  exp (imI9 + iwt ) ,  

m=O 
(2.14) 

whereas the end a t  x = L is closed. Thus the axial velocity at the moving wall 
u(xw) is given by axw/at and the no-slip condition yields for the radial and tangential 
velocities v and w 

u(xw)  : o(xw) : w(x,) = 1 : - i3xw/8r: - r-1 ax,/a6. 
Upon expanding into Taylor series around x = 0 and arranging the terms according 
to the perturbation expansion (2.1) the following end-conditions are obtained to 
linear order : 

I 00 

ul(r, 8, x = 0;  t )  = u, = C exp (im6+ iwt),  
m=O 

v1 = w1 = Tl(r, 6, x = 0 ;  t )  = 0, 

u1 = v1 = w1 = Tl(r, 19, x = L;  t )  = 0, 

(2.16) 
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with the suitable normalization 

llaio’(r)(12 = 101 It2io)(r)12rdr = 1.  

At this point it is also worth looking at  the driving end-condition for the second- 
order quantities which are evaluated as: 

aU 
u2(r, 8, x = 0; t )  = - X ,  -l ( X  = o), ax I 

(2.16) 

I i axw 
r 88 ax 

w2(r,8,x = 0; t )  = -- - ue-xw 3 ( x  = 0). 

To assure that the second-order excitation amplitudes are much smaller than the 
first-order amplitude u, = iox,, the following conditions involving the linear solution 
v, must hold: 

(2.17) 

(2.18) 

These conditions have to be considered when designing an experiment where radial 
modes are important since the plane piston strikingly violates condition (2.18) thus 
indicating that nonlinear effects are essential in the corner between a moving piston 
and the wall. 

3. The solution of the basic equations by separation of variables 
In  Monkewitz (1 9771, denoted hereafter as TH, plausibility arguments are given for 

the problem being well posed which are based on the strong ellipticity (cf. Nirenberg 
1955) of the system of equations (2.6)-(2.9). Proceeding to the practical solution the 
trial solution 

m 

q = 2 q‘cm)(r) exp ( Kx + im8 + io t ) ,  (3.1) 
m=O 

is introduced for every acoustic variable q (omitting the index 1 in the following). The 
representation of q by a Fourier series in 8 is justified by its peripdicity; the separation 
of x and r on the other hand is possible as the z-dependence in all four equations 
(2.6)-(2.9) is given by the sole differential a2/az2. This ‘fortunate’ fact constitutes the 
key to the analytic solution enabling the separation of all the four equations with the 
same separation constant K 2 ,  K being referred to as ‘ axial wavenu?ber ’ or ‘zigenvalue ’. 

The first two equations (2.6) and (2.7) are solved by setting Yim) = FYim) yielding 
a quadratic equation for r with the solutions I’ = f i. Taking into account the condi- 
tion (2.12) the general solution for every order (m) of the 8 Fourier series with suitably 
chosen constants C, and C, is found to be: 
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A m 'J"brn) = l&u[Jm+1(Mur) - Jm-1(Mur)I + Cw - Jm(JGr), (3.3) 

with J, denoting the Bessel function of integer order m and the 'radial wave number' 

J44r 

Mu given by 

M u = +  K2-- . [ ?I i  (3.4) 

The third component @krn) is calculated through the relation (2.10) : 

The sign in (3.4) has to be chosen such that Mu equals K in the limit w --f 0. In  the 
following the double signs will be omitted and all wavenumbers will be supposed to lie in 
the right complex hulj-plane. The symmetric solutions are easily recovered through 
the symmetry relation given in 9 4.2. 

This yields again a quadratic equation for i2 with the solutions: 
The equations (2.8) and (2.9) are solved in an analogous way by setting Pcrn) = 

where ,8 is defined by p = ua. With appropriately normalized constants C, and C, one 
has finally: 

(3.7) 

(3.8) 

$cnL) = C, Jrn(&,r) + Ct QTIJrn(&r), 

Pcm) = C, Q, Jrn(J&r) + C, Jrn(Mtr), 

the radial wavenumbers M, and Mt being defined by : 

'; Re[M,] 2 0, 
yw2 - iw(y - 

Mv = [a.' (3.9) 

(3.10) 

4. The application of the boundary conditions at the tube perimeter: the 
eigenvalue equation and its solutions 

4.1. The eigenvalue equatiolz 

The application of the boundary conditions (2.13) a t  r = 1 on P(m)  and Fm) obtained in 
Q 3 leads to a system of linear homogeneous equations for the constants C,, Ct, Cu and C,. 
For a non-trivial solution the determinant has to vanish, which yields the eigenvalue 
eauation: 

Introducing the function Frn(z) = 2J,+,(z)/zJrn(z), (4-2) 
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a second form of (4.1) is given which, although singularities are introduced, will be 
useful for analytic approximation purposes as the function Fm is easier to deal with 
than are single Bessel functions. 

It has to be noted that, for m = 0 and y -+ I, (4.1) reduces to the eigenvalue equation 
for liquids given by Scarton & Rouleau (1973) as in this case av/Qt tends to zero. 

4.2. General considerations on the solutions of the eigenvalue equation 

Instead of adopting a numerical approach to the solution of the eigenvalue equation 
(4.1), analytic considerations will be pushed as far as possible. The following general 
considerations enable the solutions to be put into a systematic order. 

First a useful symmetry property of (4.1) is readily verified: with the set of wave- 
numbers ( K ,  Mv(K), M,(K), M,(K)) also the symmetric set ( -  K ,  -Mv(K), -Mt(K) ,  
-M,(K)) is a solution of (4.1). Thus the search for solutions can be restricted to the 
right complex half-plane. 

The next step in finding all the eigenvalues is the evaluation of their number using the 
argument that for arbitrary end-conditions the superposition of the eigensolutions 
should yield a unique final solution, taking for granted that the problem is mathe- 
matically well posed (cf. 9 5.3). For the mathematical formulation it is convenient to 
introduce the notion of endvectors. From any solution vector Sm) which is in general - 

a linear combination of eigenvectors the corresponding endvector 9(m) is constructed as 
follows : 

T ( r , x  = L)  
u( r ,x  = 0) 

length L 
v(r ,x  = L)  
w(r ,x  = 0)  
w(r ,x  = L)  

(4.4) 

It has to be noted that for the half-infinite tube only the axially damped eigenfunctions 
proportional to exp ( - K x )  (with Kin the right complex half-plane) have to be retained 
so that the even components of all endvectors vanish. Now we consider pure endvectors 
which are defined by having only one component different from zero. With this idea 
each of the eight possible end-conditions, which are functions of r ,  can be matched 
independently by superimposing a complete set of the corresponding pure endvectors 
with appropriate amplitudes. Thus the number of complete sets of pure endvectors has 
to equal the number of end-conditions. By the argument that it must be possible to 
obtain these pure endvectors from the eigen-endvectors by a linear transformation, it 
is concluded that for the present case of eight end-conditions eight in$nite sets or 
' bands' of eigenvalues have to exist, four in the right hau-plane and four symmetric bands 
in the left hav-plane according to the symmetry property of the eigenvalue equation. 
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The four pairs of bands will be denoted by the capital letters A to D, thus extending the 
notation of Scarton. 

Knowing the number of eigenvalue bands, a selection of simplified problems is 
exploited in the way of a heuristic ‘perturbation approach’ in order to obtain first 
a characterization of each band and second rough estimates for the eigenvalues. The 
simplest problem (a)  is the unrealistic but instructive inviscid case with heat conduction 
which is solved explicitly. The second problem (bO), characterized by y = 1 and m = 0, 
has been solved by Scarton & Rouleau (1973) except for the temperature and tangential 
velocity modes which form the C- and D-band. Furthermore their results have been 
reformulated in terms of ‘natural’ wavenumbers which will be discussed subsequently. 
The last case (bm) extends Scarton’s results to m > 0. For each case the following 
results are listed: the eigenvalue equation, its bands of solutions (band indices A to D, 
order index n within each band) and the corresponding eigenvectors whereby also 
results of the subsequent discussion are incorporated. 

(a )  p = O , A * O , y =  1 
Eigenvalue equation: Jm(Mt) Jh,(Mw) = 0,  

with (4.5) 

and 
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Bands of solutions: 

Eigenvectors : 

3 66 

(4.9) 

(4.10) 

(bm) p + 0, h + 0, y = 1, m > 0 
Eigenvalue equation : 

-~M,M~J,+ ,~M, )J , (M)  [c(M)I) = 0. (4.11) 

Bands of solutions : 

(4.12) 1 {X, An> x 2 {A, 
{ ~ t ,  cn> = * {.L, n>, 

{Mu, Bn} M k {L1, n}, 

(MU, on> M k {A, 
Eigenvectors : 

T (m)f T (m)* Jm(j,,mr) (m)* T (m)f 

(4.13) 

(:)An ( i ) B n  ( I Q n  ( i ) D n  ‘ 

The main ideas for the solution of the more general eigenvalue equations can be 
extracted from the inviscid case (a) ,  the primary result being the ‘natural’ characteriza- 
tion of bands: each band of solutions (4.6) is obviously characterized by a specific radial 
wavenumber- the natural wavenumber of the band- which takes finite values irre- 
spective of the parameters w and Alcr. So the A-band is characterized by& which takes 
the finite values j;,, while KAn and Mt,An are not limited to a finite region of the 
complex plane as o --f 00; in the same way the C-band is characterized by Mt which takes 
the values jm,  , while K,, is not bounded as w 4 m. This idea carries over to the more 
general eigenvalue equations in the following way: the natural wavenumbers for each 
band are confined to finite regions of the complex wavenumber-plane independently 
of all parameters whereby for different orders n within a band these regions are 
separated in an unambiguous way. These features which are essential for analytic 
approximations as well as for a simple numerical search procedure, are associated only 
with the natural radial wavenumbers which are functions of the original eigenvalue K .  
Therefore the solution of the eigenvalue equation for each band is most conveniently 
sought in terms of its natural wavenumber. 

A further point of attention is the appearance of pure solutions, i.e. eigenvectors 
with only one component different from zero, which is associated with the decoupling 
of one of the basic equations. In  case (a )  with y = 1 the pure T-solution stems from the 
decoupled thermal energy equation. 

The above results are now carried over to the more complex case (b). The physical 
argument that the case (b) cannot be fundamentally different from the inviscid case 
(a )  at least €or small friction effects suggests the natural A-band eigenvalues Mu, An to 
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lie in the neighbourhood of the inviscid solutions j&. By the consideration of the 
limiting solutions w -+ 0 and w -+ 00 (A fixed) in $5 4.4 and 4.5 this idea is proved to be 
correct even for arbitrary friction effects and y =I= 1 ; the only exception is found to be 
the solution M,, A1 which departs significantly from j;, a t  high frequency, but it is 
proved that Me,Al is still finite in the limit w + 00 so that the concept of the natural 
wavenumber remaining finite is fully confirmed for the A-band. With the C-band no 
problem occurs in case ( b )  as the basic equations accept a pure T-solution for y = 1. The 
new feature in case ( b )  is the possibility of satisfying homogeneous boundary conditions 
a t  r = 1 not only for T and v but also for u and w. This gives rise to two new bands - the 
B- and D-band-which have both to be characterized by the new wavenumber Mu. 
For the case (bO) the rough estimate (4.9) for the B-band solutions is obtained by 
recasting the results of Scarton & Rouleau (1973) in terms of the natural wavenumber 
Mu, Bn whereas the D-band solutions are obtained as zeroes of the factor J1(Mu) in the 
eigenvalue equation (4.8) and represent pure w-solutions. For the case (bm) the 
estimate (4.12) for the D-band is then suggested by the form of the eigenvalue equation 
(4.1 I )  while the estimates for the other bands remain unchanged. 

At this point the step to the solution of the most general eigenvalue equation (4.1) 
is reduced to the removal of the restriction y = 1 in the case (b ) .  With y + 1 the 
oscillation undergoes an additional ‘temperature damping ’. As the estimates (4.9) and 
(4.12) are found to be independent of friction effects it is conjectured that likewise they 
are not affected by this additional damping. The argument is also supported by the 
fact that the eigenvalues have to depend continuously on y. The principal difference to  
case ( b )  lies in the C-band being no longer a pure temperature band. But as !&/fit is of 
the order ( y -  1)A (cf. $4.3) the first two terms in (4.1) containing the factor J,(M,) 
dominate the third term in the measure that j,, remains a good estimate for Mt, cn. 

Herewith the solutions of the eigenvalue equation (4.1) are completely systematized 
and rough estimates are established. I n  the remainder it is proved in detail that all the 
natural wavenumbers remain finite in both limits w -+ 0 and w --f co. I n  addition, useful 
intermediate approximations are obtained so that a complete survey of the behaviour 
of all eigenvalues results. The quick reader may skip the following details and proceed 
directly to $4.6 where the physics of the solutions is discussed. 

4.3. The choice of suitable expansion parameters 

The formulation of‘the continuum hypothesis in terms of the actual parameters of the 
problem yields four quantities, which have to be kept small compared to unity: the first 
is the friction parameter A which is shown in $ 2 to be of the order of the ratio of the 
molecular scale and the tube diameter. The second is the quantity wR which is found 
analogously to be of the order of the ratio of the molecular scale and the wavelength 
a,,/w*. If on the other hand the molecular scale is compared to a ‘radial wavelength’ 
r$/n,  which is the approximate radial spacing between the nodes of an nth order 
inviscid eigensolution, the third quantity nR is obtained; finally the comparison of the 
molecular scale with a ‘ tangential wavelength ’ l / m  (m > 0 )  yields the fourth quantity 
mR. The conditions imposed by the continuum hypothesis - A <i 1, wR <i 1, nh <i 1, 
m A <  1-represent a restriction on the geometry and the material constants and as 
soon as A is fixed, a cutoff for the frequency w ,  the radial mode order n and the 
tangential order m. For the following expansion purposes, E defined by (4.14) is chosen 
as the most convenient small expansion parameter. As a second parameter, the 
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inverse non-dimensional Stokes layer thickness 7 is chosen, as it is widely used in the 
literature. 

e = - i w ~ ;  7 = f;)' (Re [TI 2 0). (4.14) 

Upon expanding with respect to e, the quantities Q,, Q, and the wavenumbers M,, M,, 

(4.15) 

I 
(4.16) ( y - 1 ) ( p - l ) + ( y - l ) ( p - l ) 0 ( € 2 )  

4.4.  The limit w -+ 0 for the eigenvalues 

In  the limit w -+ 0 all radial wavenumbers tend to K so that in this case one has only to 
deal with a single eigenvalue K .  To derive the limiting eigenvalue equation for K the 
expansions (4 .15)  and (4 .16)  up to terms proportional to w, i.e. proportional to q2 or e 
are introduced in the general eigenvalue equation (4 .1 ) .  Expanding all Bessel functions 
around K and introducing the function F, already defined by (4 .2 )  together with its 
derivative yields the result : 

with 

(4.17) 

The simplest solution of (4 .17)  which is identified as limiting C-band solution is 
obtained when setting J,(K) = 0: 

(4 .18)  

A further solution is obtained with the asymptotic trial solution for large n, 
Mt,cn(w = 0) = K,,(oJ = 0) =j m,n,  n = l , 2  ,.... 

K = j '  m, n + cj;; + O( j;;:). 
Introducing this expression into the curly brackets of (4 .17)  and expanding into 
negative powers of j;, yields c = - 2m2. For small n a computer calculation and the 
limiting solution (4 .29)  for w -+ 00 show that the first solution of (4 .17)  of this kind is 
only found in the neighbourhood of the second zero of JA. Thus the following approxi- 
mations are found for these solutions which constitute the limiting D-band solutions: 

2m2 +o (+), n = 1 , 2  ,.... (4 .19)  

In  table 1 the approximations (4 .19)  are compared to the computer calculations 
whereby two comments have to be made: the first concerns the solutions for m = 0 

K ,  Dn(w = 0) = K,n(w = 0) = A, n+l-- .i:, n+l m, n+l 
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n m=O 
1 3.83171 
2 7.01559 
3 10.17347 
4 13.32369 
5 16.47063 

m = l  
5.31725 (5.31824) 
8.53301 (8.53310) 

11.70474 (11.70475) 
14.86297 (1446297) 
18.01518 (18*01518) 

n m = 2  m = 8  
1 6-67409 ( 6.67960) 14.01628 (14*07001) 
2 9.96070 ( 9.90140) 17.73812 (17.75121) 
3 13.16670 (13.16687) 21.21088 (21.21568) 
4 16.34564 (16.34869) 24.57642 (24.54'859) 
6 19.51181 (19.51183) 27-88226 (27.88337) 

TABLE 1. Comparison of the exact values of Mu, D ~ ( W  = 0) with the 
approximated values (between parentheses) given by (4.19). 

which are shown in 54.2  to be exact over the whole parameter range; second, some 
decline of agreement is observed at m > n which is explained byjk, n+l being asymtotic- 
ally equal to m for m 9 n .  

The remaining limiting solutions of (4 .17)  for the A-  and B-band are obtained by the 
asymptotic trial solution for large \KO\ ,  K = K O  + c,Ksl + c2 K;2 + O(Ks3) where KO is 
implicitly defined by FA(Ko) = 0. This series is introduced into the curly brackets of 
(4.17) whereby Fm(Ko) can be expressed as a function of KO using FA(Ko) = 0. Upon 
expanding into negative powers of KO one finds: 

K = K o + m K , 1 + 2 i m K , 2 + O ( K , 3 )  with FA(Ko) = 0. (4 .20)  

It remains to find the solutions KO of $';(KO) = 0 or of the equivalent equation: 

(4 .21)  

This equation (4.21) has already been solved numerically and asymptotically by 
Scarton (1970) and Fitz-Gerald (1972) for m = 0. Here a generalized and improved 
asymptotic solution of (4 .2  1)  is presented. Using Hankel's asymptotic expansions 
for the Bessel functions (cf. Abramowitz & Stegun, 1969, equation 9.2 .5)  (4 .21)  is 
asymptotically equal to: 

4 B 2 -  1 
( -  llrn cos(2K0)- -  [( - l)m sin ( 2 K 0 )  + 13 1+- 

2(2K0l2 2KO 
( - l ) " ( 4 5 i 2 - l ) ( 4 B 2 - 9 )  - cos ( 2 K 0 )  + O(KG4) = 0 with @i = m + 1.  (4.22) 

8 (2K0)3  

Now it is obvious that for a solution to exist, cos ( 2 K 0 )  must be of the order K O  and 
consequently sin ( 2 K 0 )  of the order unity. This is achieved by putting: 

2K0  = x+iy, 

(4.23) 
x = xo 1+--,+ ... ; 

y =  +In xoyo 1 + , +  ... = f ln(xoyo)+--,+ ... 

xo = ( 2 n + m - l ) n ,  ( 2  I 
[ ( :: 11 ( '1 5 0  IJ 
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n m = O  m = l  

1 0 2.56782-il.12261 
(0) (2.66 166 - i 1.2067 4) 

2 4.46630 -i1.46747 6.00384 -il*60811 
(4.47703 -il*46560) (6.01564 -i1*60894) 

3 7.69410 -i1*72697 9.23221 -il*81687 
(7.69650 -i1*72653) (9.23566 -i1.81680) 

4 10.87457 -i1*89494 12.41737 - i1.96127 
(10*8'i544 - i1.89479) (12.41881 - i1.96120) 

5 14.03889 -i2.02006 15.58564 - i2.07264 
(14.03928 -i2*02000) (15.58636 -i2.07260) 

n m = 2  m = 8  

1 3.91454 - il.31187 10.9 1990 - il.87 859 
(4.05261 - i1.4177 1) (1 1.77575 - i2.02281) 

2 7.4157 1 -i1*71396 14.99089 -i2.12515 
(7.44186 - i1.71757) (15.34379 -i2*13255) 

3 10.68450 -i1.89262 18.59 160 - i2.2 1989 
(10.69355 -i1.89300) (18.7 8 102 - i2.2 1856) 

4 13.89365-i2.02015 22.02415 -i2*29233 
(13.89781 -i2*02017) (22.13967 -i2*29013) 

5 17.07777 -i2.12073 25*37119-i2*35376 
(17.08002 -i2.12070) (25.44742 - i2.35183) 

TABLE 2. Comparison of the exact values of M y , ~ n ( ~  = 0) = M,, B ~ ( O  = 0) with the 
approximated values (between parentheses) given by (4.24). 

Upon introducing the above trial solution into (4.23) and expanding in powers of "02 

one finds consecutively yo, x1 and yl. Inserting the resulting KO int,) (4.20) a pair of 
complex conjugate solutions for K are found for every m and n .  By inspection of the 
high frequency approximations (4.33) and (4.39) or by a computer calculation the 
solutions with negative imaginary part are identified as the limiting A-band solutions, 
the corresponding complex conjugate solutions as the limiting B-band solutions. 

1 ( 4m2+3+21n(2xo) 
Mv,An(u = 0) = KAn(w = 0) 2 x 0 -  

2x0 
32m2 + 25 - 2(4m2 + 1 )  In (2xo) - 2 In2 (22,) (4.24) 

(2XO)2 

xo = ( 2 n + m -  1)m; n = 1 , 2 ,  .... I 
Mu, Bn(w = 0 )  = K,,(o = 0) = M,, , (w = 0). (4.25) 

As for m = 0,  (4.17) has the exact solution K = KO = 0, the above approximation 
(4.24) is not appropriate for ( m , n )  = ( 0 , l ) .  On' the other hand the correspondence 
with computer calculations is remarkable in all other cases. This is shown in table 2 
where again the quality of the approximation for higher m can be evaluated in the 
case m = 8. 

A t  this point all limiting solutions for w = 0 have been obtained, with the A- and 
C-band solutions in the neighbourhood of their inviscid limits as anticipated in 0 4.2. 
In a next step, the natural wavenumbers of each band could be expanded into power 
series in 7 2  and E around their limiting values, whereby in most of the cases the terms 

'3 FLM 91 
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proportional to e can be safely neglected as (q21 is much larger than [ € 1 .  This would lead 
in the terminology of Huerre & Karamcheti .( 1976) to low frequency approximations 
which are limited in the case (m,n)  = ( 0 , l )  by 1q2( < O(1) and in the other cases 
(m,n)  $: ( 0 , l )  by 1qI2 < O(lK2(u = 0)l) thus extending the low frequency range of 
Huerre & Karamcheti to be dependent of m and n.  Such approximations are carried 
out in the appendix of TH for the case m = 0 but as their practical use is very restricted, 
they are not incorporated in this paper. 

4.5. The limit w + co and high frequency approximations for the eigenvalues 

The proof that the natural wavenumbers remain finite over the whole parameter range 
is completed if the limiting solutions for w -+ co are also shown to be finite. For this 
mathematically interesting limit the unphysical ultrahigh frequency range characterized 
by 181 9 1 has to be considered, in which the continuum hypothesis is violated. 

To find the solutions of the eigenvalue equation (4.3) in this range, the expansions 
(4.15) and (4.16) for the wavenumbers in terms of 6 ( ( € 1  1 )  have to be replaced by the 
following expansions in terms of negative powers of w (A fixed) : 

(4.26) 

io = K2-- 
A ’  J 

Furthermore the asymptotic expansion for Fm(z) (cf. Abramowitz & Stegun 1969, 
equation 9.7.1) is needed: 

(4.27) 

Proceeding in the same order as in 5 4.4, first the trial solution Mt, Cn = jm, + 6 for the 
limiting C-band solutions is made according to 5 4.2. Then all other wavenumbers are 
expressed as functions of Mt,Cn whereby all signs are evaluated with the material 
constants of air which does not affect the limit jm, n.  Using (4.27) and introducing all 
expansions into the eigenvalue equation (4.3) one finds: 

for 1.1 $- i (ultrahigh frequency range) 

(4.28) 

As both limiting solutions (4.18) and (4.28) are identical and as in the same way 
Mt,cn 21 jm ,n  can be shown to be correct in all intermediate frequency ranges, it is 
concluded that the j,, are always good approximations for the C-band solutions. 
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is.1 i i , 2  i 2 , z  i i , 3  

FIGURE 2. Plot of Mu, D~ (n = 1,2) in the complex Mu, D,, plane for rn = i, = 1, u = $ 
and A = with o as parameter (0 limiting solutions o = 0 and o + a). 

The limiting D-band solutions for w + co are next found in the neighbourhood of the 
limits (4.19) for w = 0 by the trial solution Mu,Dn = jm+l,n+c/q + 0(?,r2). Expressing 
again all wavenumbers in terms of the natural wavenumber il&, Dn one finds with (4.26) 
and (4.27) the following solution of the eigenvalue equation (4.3) for the ultrahigh 
frequency range: 

le1.9 1 (ultrahigh frequency range), 

(4.29) 

Going through the same procedure but using the expansions (4.15) and (4.16) for 
161 < 1 instead of (4.26), also an approximation for Mu,Dn in the high to very high 
frequency range (following the terminology of Huerre & Karamcheti 1976) is obtained. 

1.1 1, IJy < 1 (high and very high frequency range). (4.30) 

Herewith the assertions of $4.2 are also confirmed for the D-band as both limiting 
solutions w = 0 and w + co are finite although they are no longer identical like in the 
C-band; they only coalesce asymptotically as j;, n+l ~ j , , ~ ,  ot (n + +m + 4) n for 
n -+ co and m fixed. An example of the typical behaviour of Mu, Dn between the limiting 
solutions is shown in figure 2 whereby also the approximation (4.30) is confirmed. 

The form of the limiting A-band solutions is found by the following consideration: 
if Mv,An is finite one finds with (4.26) and (4.27) that K%nFm(Mu,An) in the eigenvalue 
equation (4.3) is proportional to 7. Therefore Fm(Mt,,An) has also to be proportional to 
7 which yields Mt,,An = jm, + c/y + O ( T - ~ )  with Fm(M,, = - 27/(cjm, %) + O( 1) .  I n  the 
usual way the solution (4.31) is then obtained in which the connexion between n and 
?i is left open for the following discussion. 

The connexion between n and E is best elucidated by the computer calculation shown 
in figure 3 in which the effect of reducing systematically the value of A is studied; 

13-2 
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Im 

Re 

i 1 

A = O * 1  

I 

0 = ib.1 io.1 ib  j0,2 i6,3 i0,3 

FXUURE 3. Mu,An (n  = 1,2 ,3)  for m = 0, y = 1, a = $ and different A with w 
as parameter ( limiting solutions w = 0 and w -+ to). 

thereby the special choice y = I, which does not affect the general behaviour of 
is motivated by the ultrahigh frequency range being only of interest for 

extremely viscous liquids. With this study one finds that Mu, Al jumps successively to 
higher limiting valuesj,,,x as A is reduced and that at  this specific T i  the character of the 
solution Mu, A n  changes to give room to Mv,A1. In  TH it is shown that this behaviour is 
essentially the same for all orders m so that the result (4.31a) is completed by: 

lim Mv,A1=jm,?i  with i i = O  
w m  

lim Mv,,= = jm,n-l for 1 < n < ii, (4.31 b)  

-00 lim Mv,An = j,,, for n > ii. I 
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0 1 5 
Re 

FIGURE 4. M V , ~ l  and K A ~  for m = 0, y = 1.4, u = 0.71, a = $and two different A with o as para- 
meter (. limiting solution w = 0). A = -0-, M V , ~ l ;  --O--, Kal; --0--, KET (Bergh 
& Tijdeman 1965). A = -0-, Mv,.dl; --a-, Approximation (4.34) -. *--. 

Again one finds by using the expansions (4.15) and (4.16) instead of (4.26) approxima- 
tions for the high frequency range: 

for 171 % 1, Ire] 4 1 (high frequency range) and (m, n )  = (0 ,  l ) ,  (4.32) 

and (m,n )  =/= (0 ,  1 ) .  (4.33) 
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FIGURE 5. M , , , A ~  and K A 2  for m = 0, y = 1.4, CT = 0.71, a = 
meter (. limiting solutions w = 0 and w +a). A = 

and two different A with o a8 para- 
-D-, Mv,a2; --V--, K A ~ .  A = 

-0-, M V , ~ 2 ;  --a--, KA,. Approximations: -.- (4.33); -...- (4.35). 

It has to be noted that (4.33) constitutes an expansion around the inviscid solutions 
j;, which is certainly valid for w N jh, if A is sufficiently small to ensure that (4.33) 
is valid. With w N j;, one finds then K2An _N Mi, An - w2 N 0 (cf. 4.5 and 4.16) so that 
the frequencies w 2: jh, are identified as the radial resonance frequencies. This 
becomes obvious when looking a t  the inviscid A-band eigenvectors (4.7) and a t  the 
corresponding general expressions given in the appendix: a small excitation of the 
uA, component produces a large vAn component proportional to K;:. Therefore this 
approximation (4.33) will be of primary importance for the analytic treatment of 
radial resonances in 3 6.1. 

Apart from the high frequency approximation (4.33), two further A-band solutions 
for the very high frequency range are found by the same procedure: 

(very high frequency range), (4.34) 
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FIGURE 6. M,,,a, (-o-) and KA,, (-A-.) (n = 1 ,2 )  form = 1, y = 1, a = $ and A = with 
o as parameter (0 limiting solutions w = 0 and w -+ 03). Approximations: -.- (4.33); -..- 
(4.34); - * a * -  (4.35). 

for lJ%l < 1, 1.1 < 1 (very high frequency range). (4.35) 

To illustrate the behaviour of M,, An(w) and the ranges of validity of the above approxi- 
mations, a few computer calculations, for which a complex Newton procedure was used, 
are shown in figures 4 to 6. In all the plots the KAn are also included to show their 
typical resonance behaviour; i t  has to be noted that €or m = 0 the basic mode A1 shows 
no resonance whereas for m > 0 all A-band modes have a distinct resonance at  
w N jh, n. In  figure 4 furthermore the wavenumber KA1 for m = 0 is compared to K,, 
obtained by Bergh & Tijdeman (1965) with a simplified theory in which radial pressure 
gradients are neglected: as a result one finds that the theory of Bergh & Tijdeman 
yields good results only for 17~1 < 1 (cf. the detailed discussion in TH) as for 

2 O( 1) the effect of higher modes on the basic mode A 1 (m = 0) can no longer be 
neglected. 

Now the remaining limiting solutions of the eigenvalue equation (4.3) can be 
attributed to the B-band whereby a distinction of the cases m = 0 and m > 0 is 
advisable as for m > 0 a strong coupling between D- and B-band having the same 
natural wavenumber Mu must be expected. 

For m = 0 a first solution Mu, B1 = 0 is readily found which is shown in the appendix 
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FIQURE 7. Mu, B,, (-O-) and K B ~  (--n--) (n = 2,3)  for m = 0 ,  y = 1.4, u = 0-71, a = 2 and 
A = lo-* with w as parameter (0 limiting solutions w = 0 and w + a). Approximation (4.37), -.- 

to lead to the trivial solution of the problem. The solutions for n > 1 in the ultrahigh 
frequency range are then obtained as 

for 1.1 9 1 (ultrahigh frequency range) 

lim %, Bn = jl, n-1' 
u-+Oo 

(4.36) 

Analogously to the other bands also an approximation is obtained for the high to very 
high frequency range: 

a 

7 
M ~ , ~ ~  =jl,n-l (1+1+0(7-~)], m = 0, n =- 1 

for ]el < 1, lJ$ 1 < 1 (high and very high frequency range). (4.37) 

= 0 is no longer a solution of the eigenvalue equation (4.3) the For m > 0 where Mu, 
corresponding approximations are obtained as: 

(ultrahigh frequency range) 
t ( Y 1 Mu,Bn=jm--l,n 1+- 1 - -  +... , m > 0 for 1.1 % 1 

(4.38) 

(high and very high frequency range). (4.39) 

With figures 7 and 8 the typical behaviour of Mu, Bn and K,, which show no resonance 
is illustrated for only one value of A as Mu, Bn is almost entirely determined by the 
parameter 7 alone. 

At this point all assertions of 9 4.2 are proved and furthermore enough information 
on the actual values of the solutions of t'he general eigenvalue equation have been 
obtained to ensure a proper use of the eigensolutions, which are listed in the appendix. 
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FIGURE 8. M u , ~ n  (-O--) and Ken (--A--) (n = 1,2) for m = 1,y = 1, a = 4 and A = lo-* with 
w as parameter (0 limiting solutions w = 0 and w + a}. Approximation (4.39), -.-. 

4.6. The physical interpretation of the different bands 
In the literature the different bands of solutions are characterized by their dominant 
governing equations: the A-band modes governed mainly by (2.8) for q5 are the 
pressure-dominated modes which is best recognized in the inviscid case (a) of $4.2. 
Accordingly the C-band modes governed mainly by (2.9) for T are the temperature- 
dominated modes. Finally the B- and D-band modes governed mainly by (2.7) and 
(2.6) for $8 and $,. respectively are then the vorticity-dominated modes. It has to be 
noted that this interpretation is consistent with the concept of the natural wave- 
numbers as they originate from the respective dominant equations. 

In view of the use which will be made of the different eigenmodes to describe the 
total flow-field in the interior ofa tube, the above characterization of modes is extended 
by specifying the spatial domain inwhich each mode can substantially contribute to the 
total field. The axial extension of this domain is thereby determined by the absolute 
magnitude of the damping Re[K]. Its radial extension on the other hand is evaluated 
by differentiating between ' core ' terms and ' boundary-layer ' terms: the terms in the 
eigensolutions (cf. appendix) depending on natural wavenumbers are clearly identified 
as core terms since the natural wavenumbers are always nearly real; all other terms 
which depend on wavenumbers with large imaginary part, contribute only to a 
' boundary-layer ' near r = 1 according to the following asymptotic estimates: 

IM( B 1, ( a r g [ ~ i M ] I  <in: 

= O(1) for \ M ( l - r ) \  < O(1). (4.40) 

Considering first the A-band it has to be noted that this is the only band in which 
(Re[K,,]I can be small. According to the discussion of the radial resonances in $4.5, 
the damping of the mode An is small if the frequency w is larger than its resonance 
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FIGURE 9. Domains of influence of the different modes. 

frequency wr, , N j&  while the damping of the basic mode A1 (m = 0) is lways sm 11. 
So it is concluded that all A-band modes with w 2 j;, contribute to the global $ow-jield 
whereas the modes An with w < j;, contribute only to the endlayers at x = 0 and x = L. 

In the B-band the damping Re[K,,] = Re[(q2+ M,,,,)+]a Re[q] is already large at 
w = 0 (cf. table 2) and increases then monotonically with w .  As the ‘reach’ of the 
B-band modes is asymptotically given by the Stokes layer thickness lq-ll , the B-band 
is characterized as the Stokes endlaycr-band. 

In  the C-band the damping is given approximately by 

Re[&,] N Re[(q2a + M?,,,)$I cc at Re[q] 
so that the above considerations for the B-band apply also to the C-band. Furthermore 
it is known from 994.4 and 4.5 that iktt,cn is always very nearly equal toj,,, so that in 
the eigensolutions (cf. appendix) the temperature T and in the case y + 1 also p largely 
dominate all other physical quantities. Thus the C-band is characterized as the Stokes 
temperature and density endlayer-band. 

As both the B- and D-band have the same natural wavenumber il&, all considerations 
for the B-band apply also to the D-band. A difference between these two bands is only 
found in the special case m = 0 where the D-band is a pure w-band (cf. 9 4.2) so that it 
can be characterized as the Stokes tangential endlayer-band. 

Summing up the results, the flow-field away from the endlayers is determined by a 
few low-order A-band modes, whereas all other modes intervene only near the tube 
ends to provide a proper transition between the imposed end-conditions and the ‘inner’ 
flow-field. This is shown schematically in figure 9 which might suggest an iterative 
procedure to satisfy the end-conditions, but it has to be pointed out immediately that 
this idea is in general not applicable as the ‘inner’ flow-field is a result of the balance of 
all modes a t  the ends. 

5. The application of boundary conditions at the tube ends : the final solution 

5.1. The derivation of a general solution scheme 

At this point one has a set of eigenvectors (T, u, v, w), divided into bands, which are all 
solutions of the system of basic equations (2.6) to (2.9) and which fulfil the condition 
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So far (5.2) is purely formal. The key to its practical solution is to consider the eigen- 
endvectors as elements of an appropriate Hilbert space, which is constructed in the 
following way: first it  has to be noted that each of the 8 components of an endvector 
is itself an element of a Hilbert space W, (q = 1, . . . ,8) containing the functions of r in 
the interval [ O ,  11 with the scalar product and norm defined by 

1 

0 
(f,,g,) = J- f q i v d r ;  llf,1I2 = ( f , , f q ) ,  f,,S*EW*. (5.3) 

By the following scalar product (5.4) the space W containing the endvectors (denoted 
by gothic characters) is defined as the direct sum of the component spaces W,. 

Q 
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f,, g, E W, being the components of 9, 99 E W = @ W, with the weighting factors p, 

satisfying the conditions 

8 

q = l  

A 

With the weighting factors a freedom has been built into the Hilbert space W which 
will be used for the adjustment of the relative convergence rates of the component 
series in (5.2), where convergence means always convergence in the norm. 

For practical computations only a finite rather restricted number of eigen-endvectors 
can be retained so that the end-conditions (2.15) can only be approximated up to an 
error-endvector 9(m): 

NFJ (m) 

n = l  n=l n=l 

+ 9(”(NJ,  N,, N;,  N,, N&, N, ,  NA, N,)  = %‘im). (5.5) 

By the formulation of the problem in the appropriate space HI, the application of 
Galerkin’s method (cf. Kantorovich & Krylov 1964) is now a straightforward matter. 
The Galerkin’s equations (5 .6)  yield the best possible approximation to %Lm) in the sense 
that the norm (9cm), 9(m))+ of the error-endvector in W is minimal for given NS . . . N,. 
I n  (5.6) the sum N ;  + N ,  + . . . + N s  has been put equal to N and the band indices have 
been omitted. 

[ 2 Cn (gn, 8r)](m) = (ge, Q,)(”), k = I, . . . , N .  
n= 1 

With (5.6) the final solution for arbitrary end conditions-not only for the special 
choice (2.15) -is obtained and the problem with the simultaneous approximation of 
end conditions is generally solved without the need of additional considerations such 
as in the proposition made by Scarton (1970) which is shown in TH to be not generally 
valid. However three questions have been left open for discussion in the above analysis: 
first the suitable choice of the weighting factors pa in (5.4) which is preferably made 
apriori. Second the question arises whether there is an optimal choice for the individual 
numbers N ;  to N ,  once the total number N is fixed. Third the completeness of the 
eigen-endvectors d i n  W has to be investigated. 

5.2. The determination of the weighting factors and the optimal 
number of eigen-endvectors from each band 

As the weighting factors appear as artificial parameters in the problem, the final exact 
solution has to be independent of them. This is in fact true if the completeness of the 
eigen-endvectors in W (cf. § 5.3) is assumed: the completeness involves the vanishing 
of (9(m), 9(m)) in (5.5) as NJ . . . N g  tend to infinity. From the definition (5.4) it  is then 
obvious that all component norms of 9(m) vanish separately irrespective of the y’s. 
Thus the weighting factors can be used freely to influence the relative magnitude of the 
components of 9(m) and could be determined iteratively by Lawson’s algorithm (cf. 
Ellacott & Williams 1976) to yield any desired ratio of the component norms of Bm). 
This procedure is nevertheless not adopted because of its complication and because the 
free choice of the p’s is severely constrained by the limited accuracy in numerical 
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calculations: for good results it is required that a t  most in the important scalar 
products ( ) all component scalar products are of the same order of magnitude. 

Considering the expressions (5.1) for the eigen-endvectors a first choice is made by 
setting p1 = p2 = vT, p3 = p4 = yu, y5 = y6 = vv, p1, = q+, E vW, thus defining only 
4 weighting factors associated with the physical quantities. To make the most im- 
portant component scalar products the same order of magnitude, three cases have to 
be considered: 

Awayfrom radial resonances the above requirement is matched by the following ratio: 

(pT:vu:pv:pw) = ( 1 : i : l : l ) .  (5.7) 

At a radial resonance with L = 00 clearly the resonant eigenvector An is dominant. 
Using the expansions (4.16) and (4.33) (KAnl is found to be of the order At. As I I?An112,  
l18An112, IldAnl12 are of order IKAnl-2 (cf. appendix) whereas llaA,112 is of order unity, 
the appropriate ratio in this case is 

(vT:pu:pv:vw) = ( l :A-*:i: l ) .  (5.8) 

A t  a radial resonance withJinite L additional difficulties occur when the conditions on 
u at both ends have to be satisfied by weakly damped eigensolutions with a long wave- 
length compared to L. By considering the combination 82,  - exp ( - KA, L)  €5, of 
the resonant eigen-endvectors in which u(x = L )  = 0,  the difficulty is traced back to 
the factor [I - exp ( - 2KAnL)] being small, O(Lh2).  This suggests the modification of 
the ratio (5.8) to 

(vT: vu: vv: pw) = (1 : L-lh-f : 1 : 1). (5.9) 

To optimize the ratio of the numbers N 2 . .  . N ,  for a given total number of eigen- 
endvectors N one has to realize that the error is composed of two parts: a basic part 
which arises from the number N being finite and a second part which is determined by 
the amount of interference between concurrent end conditions. The way to minimize 
this interference or ‘compromise’ error is found by an argument on the possibility of 
constructing pure endvectors introduced in $4.2  out of a finite number of 8’s. To 
eliminate for instance the first component in all the NS eigen-endvectors €2, by 
appropriately combining each of the 82,, with say the N ,  eigen-endvectors b,,, the 
linear span of the NS functions ?An must be identical to the linear span of the N ,  
functions T,. Carrying this argument through all the bands and components one finds 
that for each component the component-functions of every band must have the same 
linear span. Under this condition eight bands of pure endvectors can be constructed and 
all end conditions can be matched independently in an optimal way without additional 
interference errors. It is therefore concluded that the condition of equality of linear 
spans has to be matched as precisely as possible. Considering the results of 3 4 this is 
achieved by setting 

h 

for 

for 

m = 0: NB = Nc = NA - 1;  No arbitrary, 

m > 0:  NB = Nc =N,  = NA, 
with 

N;  = N ,  G NA, NB = N ,  = NB, N& = N ,  N,, N$ = N ,  = No. (5.10) 

The choice for m = 0 is thereby motivated by the special role of the mode A1 which 
has no counterpart in the B-band and by the D-band being decoupled. 
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Finally it has to be assured that &im)(r) in (2.15) can be reasonably approximated 
has to be contained in the linear span of say which means that a major portion of 

the NA functions t2yA. 

5.3. The completeness of the eigen-endvectors in W 
The most difficult question in connexion with the matching of end-conditions is 
whether the eigen-endvectors d which are divided into eight bands form a complete 
set of elements of W, where completeness means the vanishing of the error d ( m )  in 
(5 .5 )  for arbitrary gLrn)€ W as NA, NB, N,, ND --+ 00. 

A rigorous proof has not been attempted, but a numerical check has been performed 
in the axisymmetric case m = 0 with a computer program consisting of several parts: 
in a first step the approximate eigenvalues of $ 4 are improved by a complex Newton 
procedure using the idea of natural wavenumbers. Thereby the Bessel functions are 
calculated with utmost care to an accuracy of 13-14 digits (CDC single precision) using 
their series expansion, Hankel’s asymptotic expansion and expansions around their 
zeroes (Detournay & Piessens 1971). Second the scalar products ( ) in the Galerkin’s 
equations are calculated by evaluating analytically all the component scalar products 
(5.3). Third the system of Galerkin’s equations (5.6) is solved by the method of 
Cholesky’s triangle decomposition (Schwarz, Rutishauser & Stiefel 1972) and lastly 
the total norm of the error 9 0 )  is calculated together with its component norms. With 
this program four different combinations of A and w with two end-conditions (2.15) 
denoted by (PL)  and (PI) and defined below have been investigated. 

(PL) excitation by an oscillating plate at x = 0 

(5.11) 

(PI) excitation by a plane piston at 5 = 0 

&LO) = 2a. (5.12) 

Except for the case ( P I )  a t  high frequency which is questionable because of nonlinear 
effects (cf. $ 2 )  and where also the number of modes was insufficient, all calculations 
showed in the range NA E [3,21] a convergence to zero of every single component norm 

of the error 9(0) at least like N > i .  TXs gives a sounh inhicakm that the procehure 
converges at  least like the convergent series and that the 8’s are complete in W. 
Furthermore the 8’s are found to be also linearly independent. Finally the pointwise 
convergence is established by the fact that the amplitudes of the most important modes 
converge towards limits which are reasonably independent of the weighting factors 
(cf. TH for detailed results). 

6. Examples of radial resonance and end-layers 
6.1. Analytic results for the radial resonance case 

with rotational symmetry and y 4 1 

A first discussion of the radial resonance case in $4.5 has shown that the behaviour of 
the radial velocity is essentially determined by the factor M,, An/KA, (cf. the expression 
A 2 for 6 in the appendix). In fact it has been shown that I KAnl has a sharp minimum for 
w 2: ji, and n > 2 whereas M,, An remains nearly constant around this frequency. Thus 
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A 

FIGURE 10. Departure of the resonance frequency w?, of the mode A2 from its inviscid value &, 
versus Afor air (m = 0, y = 1.4, (T = 0.71, a = $):numerical calculation, -; and approximation 
(6.21, ---. 

it is obvious to define the resonance frequency w?,, of the nth A-band mode as the 
frequency a t  which the factor 1 Mv,An/KAnJ has its maximum value - or in other words 
a t  which l/OAnll attains its peak value with a given excitation of aAn. Using the high 
frequency approximation (4.33) for and the expansion (4.16) to calculate KAn, 
one finds upon replacing e and 7 by their definitions: 

with 

for m = 0 (rotational symmetry) and y + 1. I 
With these expressions the maximum of /Mv An/KAnI is found at: 

In figure 10 the approximation (6 .2 )  for the resonance frequency wr, of the mode A 2  is 
compared to numerical calculations for different A whereby the correspondence is 
found to degrade above A = 

Besides the good approximation (6.2) for the resonance frequency, information on 
the s h p e  of the resonance curve, i.e. on the behaviour of //CAn G A n / /  in the neighbourhood 
of is also desirable. The problem which occurs here is the determination of the 
amplitude Can: in general C,, can only be obtained by going through the whole pro- 
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cedure described in $ 5  and depends naturally on the end-conditions. But as by 
numerical evidence the amplitude CAn is nearly constant in a neighbourhood of w,., n, 

this difficulty is circumvented by normalizing IICAnBAnll with its value at the resonance. 
Setting w = w,., + Aw and using the approximations (6.2) and (6.3) one finds: 

with w = w,,,+Aw and w , . , ~  given by (6.2) (m = 0, y f 1 ) .  

This approximation (6.4) which is compared to numerical calculations in 9 6.2, is of 
some importance as it is possible to determine approximately the reference quantity 
IIcA2@A211r in the case where the oscillation in a half-infinite tube (Z = co) is excited by 
the end-condition (PL) defined by (5.11). To this the general method of $ 5  is applied 
with the following simplifications : when dealing with a half-infinite tube, only the 
axially damped eigen-endvectors &- (cf. 5.1)  have to be considered in which, further- 
more, only the components T ( x  = 0 ) ,  u(x  = 0 )  and v(x = 0 )  have to be retained, as for 
m = 0, w is identically zero. Then the component T(x = 0)  can be omitted as it is possible 
with the nearly pure &zn to satisfy a posteriori the end-condition for T ,  while leaving 
the results for u and v unchanged up to higher-order corrections. Finally the success 
of the approximation justifies the restriction to the absolutely necessary eigen- 
endvectors C?;2 and €g2. 

To determine the scalar products involved in the Galerkin's equations (5.6) around 
the resonance frequency w,., of the mode A2 w may be written as 

o = w,.,,+ch* = j + A a  [ c - ( y - 1 )  ( 2;)t] + O ( 4 ,  (6.5) 

with j = jh,2 = jl,l. 

Introducing this expression into the high frequency approximations of $ 4.5 and using 
the expansions (4.16) one finds for the A l ,  A2 and B2 wavenumbers: 
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Evaluating the integrals (5.3) and expanding the Bessel functions, the component 
norms and scalar products of the eigen-endvectors involved are obtained. Discarding 
all quantities of higher order in A one finds: 

Combining the above component scalar products with the weighting factors (5.8) to 
the scalar products ( >, the Galerkin equations (5.6) take the following form: 

I 
1 1 

C ; 4 q  mQ-l +c,,-. = - [ ] AJ (2A)t' 

with the solutions: 

with ~ = j ~ , ~ + A 9  c - ( 7 - 1 )  1,' , [ kJ31 
J for 

defined by (5.11). 
m = 0, L = 00, y + I, o = w , , + c A 9  and the excitation (PL) 
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lIc.2 c A 2 ll, 
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10-1 
10-6 I 0-4 10-2 A 

FIQURE 11. Norm of the maximal radial velocity in the resonance of the mode A2 versus A: 
numerical calculation, -1 , approximation (6.10), ---. Parameters: rn = 0, L = co, NA = 16, 
excitation (PL);  y = 1.4, u = 0.71, u = f .  
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FIUURE 12 (a). For legend see page 387. 
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FIUURE 12. Small friction effects. Excitation (PL),  N ,  = 16, L = CO, A = y = 1.4, d = 0.71, 
u = t. (a)  Phase and group velocity versus w ;  (b )  Resonance curve and phase versus w ;  (c) Flow- 
field at the resonance of the mode A2 (@,, * = 3.83105) at 2 = 1.63920: numerical calculation, -; 
approximation (6.1 l ) ,  ---. 
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FIGURE 13. Large friction effects. Excitation (PL), NA = 16, L = CO, A = lo-', y = 1.4, d = 0.71, 
CL = 2. (a)  Phase and group velocity versus o; ( b )  ' Resonance curve' versus w ;  (c) Flow-field a t  the 
'resonance' of the mode A2 (or, = 3.75) at 5 = 1.605. 
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So the reference quantity IIC>nOAnllr in (6.4) can indeed be determined approximately 

1 

for this particular case: 

(6.11) 

(6.10) 

for 
In  figure 11 this result shows good agreement not only in the exponent of A but also 

in absolute magnitude with numerical calculations for A c The result (6.9) not 
only allows the determination of resonance curves, but can also be used to compute 
directly the physical quantities p and v which are of particular interest in a radial 
resonance. Upon expanding the exponential factors exp ( - Kx) one finds outside the 
endlayer of thickness O( 17 I -l) where the mode B2 is damped out the following expres- 
sions, which are compared to numerical results in s 6.2: 

m = 0,  L = m, y $. 1, w = wr,2 and the excitation (PL). 

with 

for m = 0, L = m, y $. 1, o = w , ~  and the excitation (PL). 

6.2. Computer calculations for radial resonance cases with rotational symmetry 

In  this section two examples of the radial resonance of the mode A2(m = 0) in a half- 
infinite tube - one with small and one with large friction effects - are shown. Because of 
the difficulties occurring with a plane piston which were discussed in conjunction with 
the boundary conditions, the excitation with the oscillating plate (PL) defined by 
(5.11) has been chosen. 

In both cases the phase and group velocity of the mode A2 is plotted. Thereby it has 
to be noted that the usual concept of group velocity, defined by do/d(Im [ K J ) ,  becomes 
meaningless for large damping Re [K]  2 O(Im [K]) .  For comparison the phase and 
group velocities in the inviscid case (c.f. 5 4.2) are given by: 

(6.12) 

(6.13) 

I 
I 

Phase velocity 

uph = 

uph = w/Im [KAZ], 
o < jl,l( = 3.83171)' 

2- '2 
uPh = "/(" .?1,1)' >jl , l '  

Group velocity 

Uar  = a 7  

uG,. = dw/d(Im [K,,]), 

w < A, 1, 
UfJr = (w2 -j?, I)'/", " ' jl, 1' 

Thus a transition of the mode A2 occurs in the resonance from a strongly damped 
standing wave to a running wave which is undamped in the inviscid case. The effect 
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F I a m  14 (a, b ) .  For legend see page 391. 

of viscosity this behaviour is apparent in figures 12(a) and 13(a). The 3spective 
resonance curves are plotted in figures 12 ( b )  and 13 (b ) .  In  the case of small friction 
effects also the phase of Cz20A2 is incorporated, as then it is constant over the whole 
core section. In  figures 12(c )  and 1 3 ( c )  the physical quantities p ,  u, v and T are 
plotted in a cross-section located at one wavelength of the basic mode A 1 away from 
the end (z = 2 ~ / I m  [K,,]). Further examples including also tubes of finite length are 
given in TH. 

6.3. Computer calculations of endlayers with rotational symmetry at low frequency 
In  this section finally two examples of endlayers are presented for the case where the 
Stokes layer thickness J~--ll is equal to 1, i.e. where the flow away from the ends is of the 
Poiseuille type (more examples can be found in TH). Again a half-infinite tube is 
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FIGURE 14. (a)-(d) Flow-field in the endlayer near z = 0 as a function of x and r with the excitation 
(PL) and NA = 21, L = co, w = 10-4,  A = 10-4,  y = 1.4, u = 0.71, a = $ (scales for the flow- 
variables are given in the diagrams). 

considered because at this low frequency the interaction between the two endlayers 
of a finite tube is negligible unless the tube is very short (L  < 4). In contrast to the 
resonance cases both end conditions, the oscillating plate (PL) and the plane piston 
(PI) defined by (5.11) and (5.12), have been used, as for a relatively thick boundary 
layer the non-linear effects in the corner between piston and tube wall do not signifi- 
cantly change the results of the linear theory according to the experimental evidence 
of Gerlach & Parker (1967). In  the calculations for figures 14 and 15 the errors ar x = 0, 
i.e. the differences between the imposed end conditions and the calculated profiles a t  
x = 0, contain primarily the highest modes A21 and B21, which are highly oscillatory 
in the radial direction and strongly damped in the x direction (cf. $4.4). For better 
readability of the figures these oscillations have been smoothed out; to give an idea of 
the actual errors the envelopes of the oscillations a t  x = 0 are indicated by shaded 



392 P. A .  Monkewitz 

= I  - a 
- 1  

0 

Irn [ t i ]  

- 1  

r 

- 0  

r 

- 1  

1 2 x 

FIGURE 15(a, b ) .  For legend see next page. 

areas wherever they exceed the drawing accuracy of the smoothed profiles. In  ad- 
dition the error norms - IIAuII = (u(x = 0) - u,, u(x = 0) - u,)*, IIAvll = (v(z = 0) - 0, 
v(x = 0) - O)*, etc. -are listed on the figures. 

This work was prepared as a Ph.D. thesis under the direction of Prof. Nikolaus Rott. 
The author wishes also to acknowledge many helpful discussions with Prof. Eduard 
Stiefel. 

Appendix. The general eigenfunctions 
The eigenfunctions are obtained by eliminating three of the four constants C,, C,, 

C,, C, in the solutions of 5 3 by use of the boundary conditions (2.13) at r = 1. To 
avoid singularities in the eigenfunctions it turns out that for each band a specific 
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FIGURE 15. (a)-(&) Flow-field in the endlayer near IC = 0 as a function of 2: and r with the excitation 
( P I )  and NA = 21, L = 00, o = y = 1.4, CJ = 0.71, a = 3 (scales for the flow- 
variables are given in the diagrams). 

A = 

natural amplitude has to be taken as independent amplitude in the elimination 
process. 

First the A-band eigenfunctions-are listed whereby the damped (index - ) solutions 
have been recovered from the exponentially growing (index + ) solutions proportional 
to exp ( + K z )  through the symmetry relation of 3 4.2. For numerical purposes the 
natural A-band amplitude Cw is normalized as follows: 
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expressions in which a prime denotes the derivative with respect to the argument: 
With this normalization the A-band eigenfunctions are given by the following 

a,, Rt defined by (3.6), Mu (Re [J&] 3 0) defined by (3.4) and Mv, Mt defined by (3.9) 
and (3.10). 
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With C, as independent B-band amplitude it follows immediately that the solution 
Mu, B1 = 0 of the eigenvalue equation (4 .1 )  for (m, n) = (0,1) represents the trivial soh-  
tion (cf. $ 4 . 4 )  which has been overlooked by Scarton & Rouleau (1973). If in this case 
1’Hopital’s rule is applied to the A-band expressions (A 2) then the resulting ‘eigen- 
functions’ violate either the boundary conditions or the basic equations. For 
(m, n) + (0 , l )  on the other hand the expressions (A 2) are appropriate also for the 
B-band. 

The natural amplitude of the C-band is analogously found to be Ct. By this choice 
singularities are avoided when y is set equal to 1. With the normalizations (A 3) the 
expressions (A 4) are then readily derived. 

uhn = Ct;n Qcn(r) exp [ - Kcn(L - x) + im6 + i o t ] ,  
u~~ = Cen Qon(r) exp [ - Kcnz + ime + iwt], 

v& = Chn CCn(r) exp [ - Kon(L - z) + im6 + iwt], 
vijn = - Cijn Con(r) exp [ - Kcnx + i d  + iwt], 
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In  the D-band the case m = 0 has to be considered separately. The solution has 
already been found in J 4.2 to be a pure w-solution which for completness is again listed 
in normalized form. 

For m = 0: T6n = 0, 
usn = 0, 
f 

VDn = O, 
w&,, = C$nODn(r) exp [ - KBn(L - X) + id], 
 WE^ = CznODn(r) exp [ - K D n x  + id], 

For m > 0 the expressions (A2) are appropriate also for the D-band, whereby an 
additional normalization (A 6) might be useful: 
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